论文标题
高能Millihertz准周期振荡1A 0535+262,带有Insight-HXMT挑战当前模型
High energy Millihertz quasi-periodic oscillations in 1A 0535+262 with Insight-HXMT challenge current models
论文作者
论文摘要
我们在2020年爆发的BE/X射线二进制1A 0535+262中使用Insight-HXMT数据研究了Milliherherz准周期振荡(MHz QPO)。在27-120 KEV能量带中检测到MHz QPO。 QPO质心频率与源通量相关,并在爆发期间在35-95 MHz范围内发展。 QPO在50-65 keV频段中最显着,其显着性约为8 sigma,但在最低(1-27 keV)和最高(> 120 keV)的能带中几乎无法检测到(<2 sigma)。值得注意的是,到目前为止检测到MHz QPO的最高能量,对MHz QPO的检测是最高的能量。 MHz QPO的分数RMS首先增加,然后随着能量而减小,达到50-65 KEV的最大幅度。另外,在爆发的峰值上,MHz QPO显示了双峰结构,两个峰之间的差异为〜0.02 Hz,在该系统中中子星的自旋频率的两倍。我们讨论了解释MHz QPO产生的不同情况,包括节拍频率模型,Keplerian频率模型,两种喷气机在相反方向的模型以及中子星的进动,但发现它们都无法很好地解释QPO的起源。我们得出的结论是,非热辐射的可变性可能解释了MHz QPO,但是需要进一步的理论研究来揭示物理机制。
We studied the millihertz quasi-periodic oscillation (mHz QPO) in the 2020 outburst of the Be/X-ray binary 1A 0535+262 using Insight-HXMT data over a broad energy band. The mHz QPO is detected in the 27-120 keV energy band. The QPO centroid frequency is correlated with the source flux, and evolves in the 35-95 mHz range during the outburst. The QPO is most significant in the 50-65 keV band, with a significance of ~ 8 sigma, but is hardly detectable (<2 sigma) in the lowest (1-27 keV) and highest (>120 keV) energy bands. Notably, the detection of mHz QPO above 80 keV is the highest energy at which mHz QPOs have been detected so far. The fractional rms of the mHz QPO first increases and then decreases with energy, reaching the maximum amplitude at 50-65 keV. In addition, at the peak of the outburst, the mHz QPO shows a double-peak structure, with the difference between the two peaks being constant at ~0.02 Hz, twice the spin frequency of the neutron star in this system. We discuss different scenarios explaining the generation of the mHz QPO, including the beat frequency model, the Keplerian frequency model, the model of two jets in opposite directions, and the precession of the neutron star, but find that none of them can explain the origin of the QPO well. We conclude that the variability of non-thermal radiation may account for the mHz QPO, but further theoretical studies are needed to reveal the physical mechanism.