论文标题

验证量子假设检验

Postselected quantum hypothesis testing

论文作者

Regula, Bartosz, Lami, Ludovico, Wilde, Mark M.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study a variant of quantum hypothesis testing wherein an additional 'inconclusive' measurement outcome is added, allowing one to abstain from attempting to discriminate the hypotheses. The error probabilities are then conditioned on a successful attempt, with inconclusive trials disregarded. We completely characterise this task in both the single-shot and asymptotic regimes, providing exact formulas for the optimal error probabilities. In particular, we prove that the asymptotic error exponent of discriminating any two quantum states $ρ$ and $σ$ is given by the Hilbert projective metric $D_{\max}(ρ\|σ) + D_{\max}(σ\| ρ)$ in asymmetric hypothesis testing, and by the Thompson metric $\max \{ D_{\max}(ρ\|σ), D_{\max}(σ\| ρ) \}$ in symmetric hypothesis testing. This endows these two quantities with fundamental operational interpretations in quantum state discrimination. Our findings extend to composite hypothesis testing, where we show that the asymmetric error exponent with respect to any convex set of density matrices is given by a regularisation of the Hilbert projective metric. We apply our results also to quantum channels, showing that no advantage is gained by employing adaptive or even more general discrimination schemes over parallel ones, in both the asymmetric and symmetric settings. Our state discrimination results make use of no properties specific to quantum mechanics and are also valid in general probabilistic theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源