论文标题

使用时空复合物值神经网络的体内超声定位显微镜的相位畸变校正

Phase Aberration Correction for in vivo Ultrasound Localization Microscopy Using a Spatiotemporal Complex-Valued Neural Network

论文作者

Xing, Paul, Porée, Jonathan, Rauby, Brice, Malescot, Antoine, Martineau, Éric, Perrot, Vincent, Rungta, Ravi L., Provost, Jean

论文摘要

超声定位显微镜(ULM)可以以几微米(μm)的分辨率绘制微血管。经颅乌尔姆(Ulm)在颅骨引起的畸变存在下仍然具有挑战性,这导致了本地化错误。本文中,我们提出了一种基于复杂值的卷积神经网络(CV-CNN)的深度学习方法,以检索像差函数,然后可以使用标准的延迟和湿式光束形成来形成增强的图像。选择CV-CNN,是因为它们可以通过使用相相关输入数据乘法应用时间延迟。预测像差功能而不是校正的图像也赋予了对网络的增强性解释性。此外,将3D时空卷积用于网络来利用整个微泡轨道。为了进行训练和验证,我们使用了解剖学和血液动力学逼真的小鼠脑微血管网络模型来模拟在存在像差的情况下微泡的流动。通过使用微气泡轨道将提出的CV-CNN性能与基于相干的方法进行了比较。然后,我们确认了所提出的网络在小鼠脑中概括为跨性\ textit {in vivo}数据的能力(n = 3)。使用局部预测的像差功能的血管重建包括额外和更清晰的容器。 CV-CNN比基于连贯的方法更健壮,并且可以在6个月大的小鼠中进行像差校正。校正后,我们测量了年轻小鼠的分辨率为15.6μm,代表25.8 $ \%$的改善,而该分辨率的提高了6个月大的小鼠的分辨率提高了13.9 $ \%$。这项工作导致在生物医学成像和执行经颅ULM的策略中进行复杂值的卷积的不同应用。

Ultrasound Localization Microscopy (ULM) can map microvessels at a resolution of a few micrometers (μm). Transcranial ULM remains challenging in presence of aberrations caused by the skull, which lead to localization errors. Herein, we propose a deep learning approach based on complex-valued convolutional neural networks (CV-CNNs) to retrieve the aberration function, which can then be used to form enhanced images using standard delay-and-sum beamforming. CV-CNNs were selected as they can apply time delays through multiplication with in-phase quadrature input data. Predicting the aberration function rather than corrected images also confers enhanced explainability to the network. In addition, 3D spatiotemporal convolutions were used for the network to leverage entire microbubble tracks. For training and validation, we used an anatomically and hemodynamically realistic mouse brain microvascular network model to simulate the flow of microbubbles in presence of aberration. The proposed CV-CNN performance was compared to the coherence-based method by using microbubble tracks. We then confirmed the capability of the proposed network to generalize to transcranial \textit{in vivo} data in the mouse brain (n=3). Vascular reconstructions using a locally predicted aberration function included additional and sharper vessels. The CV-CNN was more robust than the coherence-based method and could perform aberration correction in a 6-month-old mouse. After correction, we measured a resolution of 15.6 μm for younger mice, representing an improvement of 25.8 $\%$, while the resolution was improved by 13.9 $\%$ for the 6-month-old mouse. This work leads to different applications for complex-valued convolutions in biomedical imaging and strategies to perform transcranial ULM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源