论文标题

曲面上的纯和混合量子量测量路径的复杂性

Complexity of Pure and Mixed Qubit Geodesic Paths on Curved Manifolds

论文作者

Cafaro, Carlo, Alsing, Paul M.

论文摘要

众所周知,混合量子状态是关于量子系统不完美知识的高度熵状态(即不完整的信息),而纯量子状态是具有消失的von Neumann熵的完美知识状态(即完整信息)。在本文中,我们提出了一种信息几何理论构建体,以在一定程度上描述并了解纯状态和混合状态中量子系统发展的复杂行为。比较分析本质上是概率的,它使用了依赖于时间平均过程以及长期限制的复杂度度量,并且仅限于分析基础歧管上的预期地球演变。更具体地说,我们分别研究了配备有Fubini-study Metric和SJOQVIST指标的单量纯和混合量子状态的地球途径的复杂性。我们分析表明,Bloch球中混合量子状态的演变比Bloch球上的纯态的演变更为复杂。我们还验证了基于我们提出的复杂性度量的排名,该数量代表了系统演化期间在流层上探讨的区域的平均体积的渐近时间行为,与基于测量长度的排名一致。最后,着重于混合量子状态的歧管中的大地长度和曲率特性,我们观察到与SJOQVIST歧管相比,Bures歧管上的复杂性的软化。

It is known that mixed quantum states are highly entropic states of imperfect knowledge (i.e., incomplete information) about a quantum system, while pure quantum states are states of perfect knowledge (i.e., complete information) with vanishing von Neumann entropy. In this paper, we propose an information geometric theoretical construct to describe and, to a certain extent, understand the complex behavior of evolutions of quantum systems in pure and mixed states. The comparative analysis is probabilistic in nature, it uses a complexity measure that relies on a temporal averaging procedure along with a long-time limit, and is limited to analyzing expected geodesic evolutions on the underlying manifolds. More specifically, we study the complexity of geodesic paths on the manifolds of single-qubit pure and mixed quantum states equipped with the Fubini-Study metric and the Sjoqvist metric, respectively. We analytically show that the evolution of mixed quantum states in the Bloch ball is more complex than the evolution of pure states on the Bloch sphere. We also verify that the ranking based on our proposed measure of complexity, a quantity that represents the asymptotic temporal behavior of an averaged volume of the region explored on the manifold during the evolution of the systems, agrees with the geodesic length-based ranking. Finally, focusing on geodesic lengths and curvature properties in manifolds of mixed quantum states, we observed a softening of the complexity on the Bures manifold compared to the Sjoqvist manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源