论文标题

$ p $ -laplacian在kähler歧管上的第一个特征值的下限

Lower bounds for the first eigenvalue of $p$-Laplacian on Kähler manifolds

论文作者

Wang, Kui, Zhang, Shaoheng

论文摘要

我们研究了Kähler歧管上$ p $ -laplacian的特征值问题。我们的第一个结果是在紧凑的Kähler歧管上的第一个非零特征值的下限,在尺寸,直径和全体形态截面曲率和正交ricci curvature的尺寸,直径和下限方面是$ p \ in(1,2] $。 $ p $ -laplacian在紧凑型kähler歧管上具有光滑边界的$ p \ in(1,\ infty)$。

We study the eigenvalue problem for the $p$-Laplacian on Kähler manifolds. Our first result is a lower bound for the first nonzero eigenvalue of the $p$-Laplacian on compact Kähler manifolds in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature for $p\in (1, 2]$. Our second result is a sharp lower bound for the first Dirichlet eigenvalue of the $p$-Laplacian on compact Kähler manifolds with smooth boundary for $p\in (1, \infty)$. Our results generalize corresponding results for the Laplace eigenvalues on Kähler manifolds proved in [14].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源