论文标题

Instanton Floer同源性的结节手术公式II:应用

Knot surgery formulae for instanton Floer homology II: applications

论文作者

Li, Zhenkun, Ye, Fan

论文摘要

这是作者早期作品的同伴论文,该论文证明了框架同源性的整体手术公式。首先,我们提出了大型手术配方的增强,这是任何3个manifold中无原样结的合理手术公式,以及编码$ i^\ sharp(s^3_0(k))$的大部分的公式。其次,我们使用积分手术公式来研究许多3个序列的框架激体同源性:塞弗特的纤维纤维空间,具有非零的孔属度,尤其是在任何可定位的表面上的非平凡圆圈捆绑包,在一个交替的打结家族上进行手术,并带有扭曲的白头双打和剪接,并带有Twist Twist Knots。最后,我们使用以前的技术和计算来研究几乎L-space结,$ {\ it i.e。} $,带$ k \ subset s^3 $带有$ \ dim i^\ sharp(s_n^3(k))= n+2 $,用于某些$ n \ in \ in \ mathbb {n} n} _____+$。我们表明,几乎L空间结的属至少$ 2 $是纤维纤维和强烈的准阳性,并且一个几乎是L-Space结的属必须是Rolfsen的结台中的$ 8或$ 5_2 $结的镜子。

This is a companion paper to earlier work of the authors, which proved an integral surgery formula for framed instanton homology. First, we present an enhancement of the large surgery formula, a rational surgery formula for null-homologous knots in any 3-manifold, and a formula encoding a large portion of $I^\sharp(S^3_0(K))$. Second, we use the integral surgery formula to study the framed instanton homology of many 3-manifolds: Seifert fibered spaces with nonzero orbifold degrees, especially nontrivial circle bundles over any orientable surface, surgeries on a family of alternating knots and all twisted Whitehead doubles, and splicings with twist knots. Finally, we use the previous techniques and computations to study almost L-space knots, ${\it i.e.}$, the knots $K\subset S^3$ with $\dim I^\sharp(S_n^3(K))=n+2$ for some $n\in\mathbb{N}_+$. We show that an almost L-space knot of genus at least $2$ is fibered and strongly quasi-positive, and a genus-one almost L-space knot must be either the figure eight or the mirror of the $5_2$ knot in Rolfsen's knot table.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源