论文标题

freckll:蒸馏蒸馏的全部和减少系外行星化学动力学

FRECKLL: Full and Reduced Exoplanet Chemical Kinetics distiLLed

论文作者

Al-Refaie, Ahmed Faris, Venot, Olivia, Changeat, Quentin, Edwards, Billy

论文摘要

我们引入了一种新的Python 1D化学动力学代码FRECKLL(蒸馏蒸馏型外系化学动力学),以有效地发展大型化学网络。 Freckll在计算反应速率中采用“蒸馏”,从而将误差界限最小化至双精度值($ε\ leq 10^{ - 15} $)允许的最小值。与传统算法(如成对求和)的速率求和相比,蒸馏为完整和减少网络的求解时间降低了十倍。完整的和减少的Venot2020网络都包装在Freckll中,以及用于向前建模和系外行星大气检索的Taurex 3.1插件。我们介绍使用完整和减少的Venot2020化学网络在模拟的HD189733 JWST光谱上进行的TAUREX检索,并证明了总不平衡化学检索的可行性以及JWST检测不平衡过程的能力。

We introduce a new Python 1D chemical kinetic code FRECKLL (Full and Reduced Exoplanet Chemical Kinetics distiLLed) to evolve large chemical networks efficiently. FRECKLL employs `distillation' in computing the reaction rates, which minimizes the error bounds to the minimum allowed by double precision values ($ε\leq 10^{-15}$). Compared to summation of rates with traditional algorithms like pairwise summation, distillation provides a tenfold reduction in solver time for both full and reduced networks. Both the full and reduced Venot2020 networks are packaged in FRECKLL as well as a TauREx 3.1 plugin for usage in forward modelling and retrievals of exoplanet atmospheres. We present TauREx retrievals performed on a simulated HD189733 JWST spectra using the full and reduced Venot2020 chemical networks and demonstrate the viability of total disequilibrium chemistry retrievals and the ability for JWST to detect disequilibrium processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源