论文标题

在绝热量子电路中导航噪音深入折衷

Navigating the noise-depth tradeoff in adiabatic quantum circuits

论文作者

Azses, Daniel, Dupont, Maxime, Evert, Bram, Reagor, Matthew J., Torre, Emanuele G. Dalla

论文摘要

绝热量子算法通过将微不足道的状态逐渐发展为所需溶液来解决计算问题。在理想的量子计算机上,解决方案质量随着电路深度的增加而单调地改进。相比之下,当前噪声计算机中的深度增加引入了更多的噪声,并最终会恶化任何计算优势。提供最佳解决方案的最佳电路深度是什么?在这里,我们通过研究一维量子ISING模型的顺磁和铁磁接地状态之间的绝热电路来解决这个问题。我们通过电路深度$ n $和噪声强度$σ$的函数来表征最终输出的质量。我们发现,$ d $由简单的表格$ d_ \ mathrm {ifeal}+d_ \ mathrm {noise} $很好地描述,其中理想情况$ d_ \ mathrm {ifeal} \ sim n^{ - 1/2} $由kibble-zurek机械界; Nσ^2 $。因此,最佳的步骤数量最小化缺陷的数量为$ \simσ^{ - 4/3} $。我们在嘈杂的超导量子处理器上实现了该算法,发现缺陷密度对电路深度的依赖性遵循预测的非单调行为,并且与嘈杂的模拟非常吻合。我们的工作使人们可以有效地基准量子设备并提取其有效的噪声强度$σ$。

Adiabatic quantum algorithms solve computational problems by slowly evolving a trivial state to the desired solution. On an ideal quantum computer, the solution quality improves monotonically with increasing circuit depth. By contrast, increasing the depth in current noisy computers introduces more noise and eventually deteriorates any computational advantage. What is the optimal circuit depth that provides the best solution? Here, we address this question by investigating an adiabatic circuit that interpolates between the paramagnetic and ferromagnetic ground states of the one-dimensional quantum Ising model. We characterize the quality of the final output by the density of defects $d$, as a function of the circuit depth $N$ and noise strength $σ$. We find that $d$ is well-described by the simple form $d_\mathrm{ideal}+d_\mathrm{noise}$, where the ideal case $d_\mathrm{ideal}\sim N^{-1/2}$ is controlled by the Kibble-Zurek mechanism, and the noise contribution scales as $d_\mathrm{noise}\sim Nσ^2$. It follows that the optimal number of steps minimizing the number of defects goes as $\simσ^{-4/3}$. We implement this algorithm on a noisy superconducting quantum processor and find that the dependence of the density of defects on the circuit depth follows the predicted non-monotonous behavior and agrees well with noisy simulations. Our work allows one to efficiently benchmark quantum devices and extract their effective noise strength $σ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源