论文标题

时空对比度学习增强了基于会话建议的GNN

Spatio-Temporal Contrastive Learning Enhanced GNNs for Session-based Recommendation

论文作者

Wan, Zhongwei, Liu, Xin, Wang, Benyou, Qiu, Jiezhong, Li, Boyu, Guo, Ting, Chen, Guangyong, Wang, Yang

论文摘要

基于会话的建议(SBR)系统旨在利用用户的短期行为序列来预测下一个项目,而无需详细的用户配置文件。最近的作品试图通过将会话视为项目间过渡图并利用各种图形神经网络(GNN)来编码项目及其邻居之间的配对关系表示表示来对用户偏好进行建模。一些现有的基于GNN的模型主要集中于从空间图结构的视图中汇总信息,该图表在消息传递期间忽略了项目邻居内的时间关系,而信息损失会导致次优问题。其他作品通过结合其他时间信息来应对这一挑战,但在空间和时间模式之间缺乏足够的互动。为了解决这个问题,受对比度学习技术的统一性和对齐属性的启发,我们提出了一个新颖的框架,称为“基于会话的建议”,其时空对比度学习增强了GNNS(RESTC)。这个想法是通过辅助跨视图对比度学习机制来补充基于GNN的主要监督建议任务。此外,利用了一种新颖的全球协作过滤图(CFG)嵌入,以增强主要任务中的空间视图。广泛的实验表明,与最先进的基线相比,RESTC的显着性能,例如,HR@20和MRR@20的增长率高达27.08%,增长了20.10%。

Session-based recommendation (SBR) systems aim to utilize the user's short-term behavior sequence to predict the next item without the detailed user profile. Most recent works try to model the user preference by treating the sessions as between-item transition graphs and utilize various graph neural networks (GNNs) to encode the representations of pair-wise relations among items and their neighbors. Some of the existing GNN-based models mainly focus on aggregating information from the view of spatial graph structure, which ignores the temporal relations within neighbors of an item during message passing and the information loss results in a sub-optimal problem. Other works embrace this challenge by incorporating additional temporal information but lack sufficient interaction between the spatial and temporal patterns. To address this issue, inspired by the uniformity and alignment properties of contrastive learning techniques, we propose a novel framework called Session-based Recommendation with Spatio-Temporal Contrastive Learning Enhanced GNNs (RESTC). The idea is to supplement the GNN-based main supervised recommendation task with the temporal representation via an auxiliary cross-view contrastive learning mechanism. Furthermore, a novel global collaborative filtering graph (CFG) embedding is leveraged to enhance the spatial view in the main task. Extensive experiments demonstrate the significant performance of RESTC compared with the state-of-the-art baselines e.g., with an improvement as much as 27.08% gain on HR@20 and 20.10% gain on MRR@20.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源