论文标题

胸部X光片的深度学习匿名:患者隐私的保养措施

Deep Learning-based Anonymization of Chest Radiographs: A Utility-preserving Measure for Patient Privacy

论文作者

Packhäuser, Kai, Gündel, Sebastian, Thamm, Florian, Denzinger, Felix, Maier, Andreas

论文摘要

出于研究目的,在发布大量此类数据集之前,胸部X光片的强大而可靠的匿名化构成了必不可少的步骤。传统的匿名过程是通过用黑框中的图像中的个人信息掩盖个人信息并删除或更换元信息来实现的。但是,这种简单的措施将生物识别信息保留在胸部X光片中,从而使患者可以通过连锁攻击重新识别。因此,迫切需要混淆图像中出现的生物识别信息。我们提出了第一种基于深度学习的方法(Prichexy-net),以将胸部X光片目标匿名化,同时维护数据实用程序以诊断和机器学习目的。我们的模型架构是三个独立的神经网络的组成,当共同使用时,它可以学习能够阻碍患者重新识别的变形场。 ChestX-Ray14数据集的定量结果显示,重新培训后,患者重新识别的重新识别从81.8%降低至57.7%(AUC),对异常分类性能的影响很小。这表明能够保留潜在的异常模式,同时增加患者隐私。最后,我们将我们提出的匿名方法与其他两种基于混淆的方法(隐私网络,DP-Pix)进行了比较,并证明了我们方法在解决胸部X光片的隐私性实用权衡方面的优势。

Robust and reliable anonymization of chest radiographs constitutes an essential step before publishing large datasets of such for research purposes. The conventional anonymization process is carried out by obscuring personal information in the images with black boxes and removing or replacing meta-information. However, such simple measures retain biometric information in the chest radiographs, allowing patients to be re-identified by a linkage attack. Therefore, there is an urgent need to obfuscate the biometric information appearing in the images. We propose the first deep learning-based approach (PriCheXy-Net) to targetedly anonymize chest radiographs while maintaining data utility for diagnostic and machine learning purposes. Our model architecture is a composition of three independent neural networks that, when collectively used, allow for learning a deformation field that is able to impede patient re-identification. Quantitative results on the ChestX-ray14 dataset show a reduction of patient re-identification from 81.8% to 57.7% (AUC) after re-training with little impact on the abnormality classification performance. This indicates the ability to preserve underlying abnormality patterns while increasing patient privacy. Lastly, we compare our proposed anonymization approach with two other obfuscation-based methods (Privacy-Net, DP-Pix) and demonstrate the superiority of our method towards resolving the privacy-utility trade-off for chest radiographs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源