论文标题

连续渐变图的中心度量:\\不同频率的情况

Central Measures of Continuous Graded Graphs:\\ the Case of Distinct Frequencies

论文作者

Vershik, A., Petrov, F.

论文摘要

我们定义了类似于Gelfand-tsetlin模式图的一类连续渐变图,并描述了此类图的路径空间上离散类型的所有Ergodic Central测量的集合。主要的观察结果是,通常可以在帕斯卡型图的子图上进行的千古中心度量,以作为对标准Bernoulli量度限制到子图的路径空间的限制。该观察结果极大地改变了在离散图(例如著名的年轻图形)上找到中心措施的方法。 这种类型的最简单示例是由定理在简单上的归一化Lebesgue措施的弱限制中给出的;这些是所谓的CESàRO度量,它们集中在规定的CESàRO限制的序列上(此限制参数相应的度量)。 更复杂的例子是具有固定数量的行数的连续年轻图和有限等级的无限遗传学矩阵光谱的图。我们证明了沿着沿着沿着沿着中央措施的措施的存在和独特定理并描述其结构。特别是,我们的结果1)给出了所谓的无限维欲望值测量的新频谱描述〜\ cite {w} 〜-无限遗传矩阵上离散类型的Ergodic单位不变的度量; 2)描述离散分级图的连续类似物的结构。 在新出版物中似乎要考虑的新问题和联系。

We define a class of continuous graded graphs similar to the graph of Gelfand--Tsetlin patterns, and describe the set of all ergodic central measures of discrete type on the path spaces of such graphs. The main observation is that an ergodic central measure on a subgraph of a Pascal-type graph can often be obtained as the restriction of the standard Bernoulli measure to the path space of the subgraph. This observation dramatically changes the approach to finding central measures also on discrete graphs, such as the famous Young graph. The simplest example of this type is given by the theorem on the weak limits of normalized Lebesgue measures on simplices; these are the so-called Cesàro measures, which are concentrated on the sequences with prescribed Cesàro limits (this limit parametrizes the corresponding measure). More complicated examples are the graphs of continuous Young diagrams with fixed number of rows and the graphs of spectra of infinite Hermitian matrices of finite rank. We prove existence and uniqueness theorems for ergodic central measures and describe their structure. In particular, our results 1) give a new spectral description of the so-called infinite-dimensional Wishart measures~\cite{W}~ -- ergodic unitarily invariant measures of discrete type on the set of infinite Hermitian matrices; 2) describe the structure of continuous analogs of measures on discrete graded graphs. New problems and connections which appear are to be considered in new publications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源