论文标题

物理信息的图形神经网络,用于空间生产预测

Physics-Informed Graph Neural Network for Spatial-temporal Production Forecasting

论文作者

Liu, Wendi, Pyrcz, Michael J.

论文摘要

基于历史数据的生产预测为开发碳氢化合物资源提供了基本价值。经典的历史匹配工作流程通常在计算上是强度和几何学的。分析数据驱动的模型,例如衰落曲线分析(DCA)和电容抗性模型(CRM)提供了无网溶液,其解决方案具有相对简单的模型,能够整合一定程度的物理约束。但是,分析解决方案可能会忽略地下几何形状,仅适用于特定的流动状态,否则可能会违反物理条件,从而导致模型预测的准确性降解。时间序列的基于机器学习的预测模型为生产预测提供了非参数,无假设的解决方案,但由于训练数据稀疏性,很容易建模过度拟合;因此,在短的预测时间间隔内可能是准确的。 我们提出了一个无网式,物理信息的图形神经网络(PI-GNN)进行预测。定制的图形卷积层从历史数据中汇总了邻居信息,并具有将域专业知识集成到数据驱动模型中的灵活性。所提出的方法放宽了对CRM等近距离解决方案的依赖,并尊重给定的基于物理的约束。我们提出的方法是鲁棒的,相对于传统的CRM和GNN基线而没有物理限制,性能和模型可解释性提高。

Production forecast based on historical data provides essential value for developing hydrocarbon resources. Classic history matching workflow is often computationally intense and geometry-dependent. Analytical data-driven models like decline curve analysis (DCA) and capacitance resistance models (CRM) provide a grid-free solution with a relatively simple model capable of integrating some degree of physics constraints. However, the analytical solution may ignore subsurface geometries and is appropriate only for specific flow regimes and otherwise may violate physics conditions resulting in degraded model prediction accuracy. Machine learning-based predictive model for time series provides non-parametric, assumption-free solutions for production forecasting, but are prone to model overfit due to training data sparsity; therefore may be accurate over short prediction time intervals. We propose a grid-free, physics-informed graph neural network (PI-GNN) for production forecasting. A customized graph convolution layer aggregates neighborhood information from historical data and has the flexibility to integrate domain expertise into the data-driven model. The proposed method relaxes the dependence on close-form solutions like CRM and honors the given physics-based constraints. Our proposed method is robust, with improved performance and model interpretability relative to the conventional CRM and GNN baseline without physics constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源