论文标题

近似原始方程的物理信息神经网络的高阶错误估计值

Higher-Order error estimates for physics-informed neural networks approximating the primitive equations

论文作者

Hu, Ruimeng, Lin, Quyuan, Raydan, Alan, Tang, Sui

论文摘要

海洋和大气的大规模动力学由原始方程(PES)控制。由于非线性和非局部性,PES的数值研究通常具有挑战性。神经网络已被证明是应对这一挑战的有前途的机器学习工具。在这项工作中,我们采用了物理信息的神经网络(PINN)来近似PES的解决方案并研究错误估计。我们首先建立具有完整粘度和扩散率的PE的全局解决方案的高阶规则性,或者仅使用水平溶液。在PINNS框架下的分析中,只有水平案例的情况是新的。然后,我们证明存在两层tanh Pinn的存在,其中相应的训练误差可以通过将PINN的宽度宽度足够宽来任意很小,并且如果训练误差足够小,并且样品集足够大,那么真实解决方案及其近似之间的误差可以任意地很小。特别是,所有估计值都是先验的,我们的分析包括高阶(在空间Sobolev规范中)错误估计。提出了原型系统的数值结果,以进一步说明在培训期间使用$ H^s $规范的优势。

Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates are a priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the $H^s$ norm during the training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源