论文标题

学习的物理学

The Physics of Learning

论文作者

Milburn, G. J., Basiri-Esfahani, Sahar

论文摘要

与所有机器一样,学习机是一种开放系统,它通过进入低熵的自由能来源而远离热平衡驱动。我们讨论了以低误差可能性学习的计算机之间的联系,以及在经典机器和量子机上使用热力学资源的最佳使用。在可能的物理实现的背景下,讨论了固定点和峰值感知。单个光子量子内核评估的一个示例说明了量子相干性在数据表示中的重要作用。机器学习算法,在常规互补金属氧化物半导体(CMOS)设备上实施,目前消耗了大量能量。通过关注学习机的物理约束,而不是算法,我们建议基于以非常低功率运行的量子开关,可以实施更有效的学习方法。单个光子内核评估是可能的能源效率的一个例子。

A learning machine, like all machines, is an open system driven far from thermal equilibrium by access to a low entropy source of free energy. We discuss the connection between machines that learn, with low probability of error, and the optimal use of thermodynamic resources for both classical and quantum machines. Both fixed point and spiking perceptrons are discussed in the context of possible physical implementations. An example of a single photon quantum kernel evaluation illustrates the important role for quantum coherence in data representation. Machine learning algorithms, implemented on conventional complementary metal oxide semiconductor (CMOS) devices, currently consume large amounts of energy. By focusing on the physical constraints of learning machines rather than algorithms, we suggest that a more efficient means of implementing learning may be possible based on quantum switches operating at very low power. Single photon kernel evaluation is an example of the energy efficiency that might be possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源