论文标题

双宽度V:线性未成年人,模块化计数和矩阵乘法

Twin-width V: linear minors, modular counting, and matrix multiplication

论文作者

Bonnet, Édouard, Giocanti, Ugo, de Mendez, Patrice Ossona, Thomassé, Stéphan

论文摘要

我们继续在该系列的上一篇论文中启动了完全有序的二进制结构的双宽度。我们首先介绍了矩阵的奇偶校验和线性未成年人的概念,该矩阵包括迭代地替换连续的行或连续列,并使用它们的线性组合组合。我们表明,只有当矩阵类别的线性限制闭合不包含所有矩阵时,矩阵类具有双宽度。我们观察到,用于一阶模型的固定参数可访问算法检查具有$ O(1)$ - 序列(有界双宽度证书)的结构,并且有限的双宽阶层的一阶转置有限的双宽度是在Twin-twidth i的第一阶段,均在Twin-Fitth i forttth i forte for Tastth i forte for tostif imald fordifiel for Modult coultifif Incoundifif Coundifif Incoundifif Incountif Incoundif中,这一事实是有限的。我们将明确作为双赢的论点,作为双宽度IV的副产品,并且与双二维性有点相似,我们称之为排名二维性。通过上述扩展到模块化计数,我们表明,有限字段上两个共形矩阵$ a,b $的乘积的双宽度受$ a $ a $ a $ b $的函数的界限,以及该领域的大小。此外,如果$ a $和$ b $是$ n \ times n $ n $ twin twinth $ d $ over $ \ mathbb f_q $,我们表明可以在时间$ o_ {d,q}(n^2 \ log n)$中计算$ ab $。我们最终提出了一种临时算法,以有效地乘以两个有限的双宽度的矩阵,在双宽度上具有单个指数的依赖性:如果输入以紧凑的树状形式给出,则称为twin-dewin-depoption(width $ d $),则是两个$ n $ n $ n $ n $ a $ a $ a $ a $ a $ a $ n $ n $ n $ b, $ ab $ witth $ 2^{d+o(d)} $可以在时间$ 4^{d+o(d)} n $(resp。4^{d+o(d)} n^{1+\ varepsilon} $)中,并在doubly-logarith-logarith(exp.conts)中查询。

We continue developing the theory around the twin-width of totally ordered binary structures, initiated in the previous paper of the series. We first introduce the notion of parity and linear minors of a matrix, which consists of iteratively replacing consecutive rows or consecutive columns with a linear combination of them. We show that a matrix class has bounded twin-width if and only if its linear-minor closure does not contain all matrices. We observe that the fixed-parameter tractable algorithm for first-order model checking on structures given with an $O(1)$-sequence (certificate of bounded twin-width) and the fact that first-order transductions of bounded twin-width classes have bounded twin-width, both established in Twin-width I, extend to first-order logic with modular counting quantifiers. We make explicit a win-win argument obtained as a by-product of Twin-width IV, and somewhat similar to bidimensionality, that we call rank-bidimensionality. Armed with the above-mentioned extension to modular counting, we show that the twin-width of the product of two conformal matrices $A, B$ over a finite field is bounded by a function of the twin-width of $A$, of $B$, and of the size of the field. Furthermore, if $A$ and $B$ are $n \times n$ matrices of twin-width $d$ over $\mathbb F_q$, we show that $AB$ can be computed in time $O_{d,q}(n^2 \log n)$. We finally present an ad hoc algorithm to efficiently multiply two matrices of bounded twin-width, with a single-exponential dependence in the twin-width bound: If the inputs are given in a compact tree-like form, called twin-decomposition (of width $d$), then two $n \times n$ matrices $A, B$ over $\mathbb F_2$, a twin-decomposition of $AB$ with width $2^{d+o(d)}$ can be computed in time $4^{d+o(d)}n$ (resp. $4^{d+o(d)}n^{1+\varepsilon}$), and entries queried in doubly-logarithmic (resp. constant) time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源