论文标题
组织异质性的贝叶斯推断,用于胶质瘤生长的个性化预测
Bayesian Inference of Tissue Heterogeneity for Individualized Prediction of Glioma Growth
论文作者
论文摘要
可靠地通过成像数据和特定于主题的基础可靠地预测脑肿瘤的未来扩散,需要量化数据中的不确定性,肿瘤生长的生物物理模型以及肿瘤和宿主组织的空间异质性。这项工作引入了一个贝叶斯框架,以校准肿瘤生长模型中参数的空间分布,以定量磁共振成像(MRI)数据,并在神经胶质瘤的临床前模型中证明了其实现。该框架利用基于ATLA的脑部分割灰色和白色质量来建立每个区域中模型参数的特定主体先验和可调的空间依赖性。使用此框架,在四只大鼠的肿瘤发育过程中,在肿瘤发育过程的早期对肿瘤特异性参数进行了校准,并用于预测以后肿瘤的空间发育。结果表明,通过一个时间点通过动物特异性成像数据校准的肿瘤模型可以通过骰子系数> 0.89准确预测肿瘤形状。但是,预测的肿瘤体积和形状的可靠性很大程度上取决于用于校准模型的早期成像时间点的数量。这项研究首次证明了确定推断组织异质性不确定性的能力,模型预测了肿瘤的形状。
Reliably predicting the future spread of brain tumors using imaging data and on a subject-specific basis requires quantifying uncertainties in data, biophysical models of tumor growth, and spatial heterogeneity of tumor and host tissue. This work introduces a Bayesian framework to calibrate the spatial distribution of the parameters within a tumor growth model to quantitative magnetic resonance imaging (MRI) data and demonstrates its implementation in a pre-clinical model of glioma. The framework leverages an atlas-based brain segmentation of grey and white matter to establish subject-specific priors and tunable spatial dependencies of the model parameters in each region. Using this framework, the tumor-specific parameters are calibrated from quantitative MRI measurements early in the course of tumor development in four rats and used to predict the spatial development of the tumor at later times. The results suggest that the tumor model, calibrated by animal-specific imaging data at one time point, can accurately predict tumor shapes with a Dice coefficient > 0.89. However, the reliability of the predicted volume and shape of tumors strongly relies on the number of earlier imaging time points used for calibrating the model. This study demonstrates, for the first time, the ability to determine the uncertainty in the inferred tissue heterogeneity and the model predicted tumor shape.