论文标题

神经状态空间建模与潜在因果关系解散

Neural State-Space Modeling with Latent Causal-Effect Disentanglement

论文作者

Toloubidokhti, Maryam, Missel, Ryan, Jiang, Xiajun, Otani, Niels, Wang, Linwei

论文摘要

尽管在时间序列重建的深度学习方法中取得了长足的进步,但由于其对优化损失的贡献可忽略的贡献,现有的方法却没有旨在揭示具有微小信号强度的当地活动。但是,这种本地活动可以表示生理系统中重要的异常事件,例如额外的焦点触发心脏电波异常的传播。我们讨论了一种新的技术,用于重建这种本地活动,尽管信号强度很小,但它是随后具有较大信号强度的全球活动的原因。我们的中心创新是通过明确建模并解开系统的潜在状态如何受到潜在的隐藏内部干预措施的影响,以实现这一目标。在状态空间模型(SSM)的新型神经公式中,我们首先通过分别描述的相互作用的神经ODES系统引入潜在动力学的因果效应建模1)1)内部干预的连续时间动力学,以及2)其对系统天然状态轨迹的影响。由于不能直接观察到干预措施,而必须与观察到的随后效应脱离,因此我们整合了系统的无天然干预动力学的知识,并通过假设它是对实际和假设的无干预动力学之间观察到的差异来推断隐藏的干预措施。我们证明了对重建异位焦点的提出框架的概念证明,从而破坏了从远程观察结果中正常心脏电气传播的过程。

Despite substantial progress in deep learning approaches to time-series reconstruction, no existing methods are designed to uncover local activities with minute signal strength due to their negligible contribution to the optimization loss. Such local activities however can signify important abnormal events in physiological systems, such as an extra foci triggering an abnormal propagation of electrical waves in the heart. We discuss a novel technique for reconstructing such local activity that, while small in signal strength, is the cause of subsequent global activities that have larger signal strength. Our central innovation is to approach this by explicitly modeling and disentangling how the latent state of a system is influenced by potential hidden internal interventions. In a novel neural formulation of state-space models (SSMs), we first introduce causal-effect modeling of the latent dynamics via a system of interacting neural ODEs that separately describes 1) the continuous-time dynamics of the internal intervention, and 2) its effect on the trajectory of the system's native state. Because the intervention can not be directly observed but have to be disentangled from the observed subsequent effect, we integrate knowledge of the native intervention-free dynamics of a system, and infer the hidden intervention by assuming it to be responsible for differences observed between the actual and hypothetical intervention-free dynamics. We demonstrated a proof-of-concept of the presented framework on reconstructing ectopic foci disrupting the course of normal cardiac electrical propagation from remote observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源