论文标题

减少排序变异模式分解

Reduced-order variational mode decomposition

论文作者

Liao, Zi-Mo, Zhao, Zhiye, Chen, Liang-Bing, Wan, Zhen-Hua, Liu, Nan-Sheng, Lu, Xi-Yun

论文摘要

已经提出了一种新型的数据驱动的模态分析方法,用于复杂流动动力学,称为减少阶变量模式分解(RVMD),结合了变量分离和一种先进的非稳定信号处理技术的概念 - 变量模式分解。它可以通过使用Block坐标下降算法解决详细的优化问题来计算出统计上非平稳流中相干结构的低冗余自适应提取。讨论RVMD与某些经典模态分解方法之间的内在关系表明,在特定参数设置下,RVMD可以简化为适当的正交分解(POD)或离散的傅立叶变换(DFT)。通过对广泛使用的模态分解技术进行信号处理的类似分类,强调了RVMD用于执行时间频率分析的显着优势。还可以证实,RVMD和Hilbert Spectral Analysis的组合提供了一种探索瞬时动力学时空特征的物理直觉方式。最后,上述RVMD的所有吸引力特征通过两个规范流问题得到了很好的验证:瞬态圆柱唤醒和矩形湍流超音速尖叫喷气机。

A novel data-driven method of modal analysis for complex flow dynamics, termed as reduced-order variational mode decomposition (RVMD), has been proposed, combining the idea of the separation of variables and a state-of-the-art nonstationary signal-processing technique -- variational mode decomposition. It enables a low-redundant adaptive extraction of coherent structures in statistically nonstationary flows, with its modes computed by solving an elaborate optimization problem using the block coordinate descent algorithm. Discussion on the intrinsic relations between RVMD and some classic modal decomposition methods demonstrates that RVMD can be reduced into proper orthogonal decomposition (POD) or discrete Fourier transform (DFT) at particular parameter settings. The significant advantages of RVMD for performing time-frequency analysis are highlighted by a signal-processing analogous categorization of the widely-used modal decomposition techniques. It is also confirmed that the combination of RVMD and the Hilbert spectral analysis provides a physically intuitive way to explore the space-time-frequency characteristics of transient dynamics. Finally, all the appealing features of RVMD mentioned above are well verified via two canonical flow problems: the transient cylinder wake and the rectangular turbulent supersonic screeching jet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源