论文标题

无监督异常检测的自我监督指导性分割框架

Self-Supervised Guided Segmentation Framework for Unsupervised Anomaly Detection

论文作者

Xing, Peng, Sun, Yanpeng, Li, Zechao

论文摘要

在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样本特征作为分割异常检测的指导信息,提出了一种新型的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图,以产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的口罩。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,伪造的异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。

Unsupervised anomaly detection is a challenging task in industrial applications since it is impracticable to collect sufficient anomalous samples. In this paper, a novel Self-Supervised Guided Segmentation Framework (SGSF) is proposed by jointly exploring effective generation method of forged anomalous samples and the normal sample features as the guidance information of segmentation for anomaly detection. Specifically, to ensure that the generated forged anomaly samples are conducive to model training, the Saliency Augmentation Module (SAM) is proposed. SAM introduces a saliency map to generate saliency Perlin noise map, and develops an adaptive segmentation strategy to generate irregular masks in the saliency region. Then, the masks are utilized to generate forged anomalous samples as negative samples for training. Unfortunately, the distribution gap between forged and real anomaly samples makes it difficult for models trained based on forged samples to effectively locate real anomalies. Towards this end, the Self-supervised Guidance Network (SGN) is proposed. It leverages the self-supervised module to extract features that are noise-free and contain normal semantic information as the prior knowledge of the segmentation module. The segmentation module with the knowledge of normal patterns segments out the abnormal regions that are different from the guidance features. To evaluate the effectiveness of SGSF for anomaly detection, extensive experiments are conducted on three anomaly detection datasets. The experimental results show that SGSF achieves state-of-the-art anomaly detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源