论文标题
在k((U))上偏斜多项式的分解
Factorization of skew polynomials over k((u))
论文作者
论文摘要
让$ k $是一个特征性$ p> 0 $的完美领域,让$ k = k((u))$是$ k $的laurent系列的领域。我们研究偏斜的多项式环$ k [t,φ] $,其中$φ$是$ k $的内态性,扩展了$ k $的frobenius内态性。我们对不可约偏度的多项式进行描述,在这种情况下形成牛顿多边形理论的类似物,并对不可减至的元素的相似性类别进行分类。
Let $k$ be a perfect field of characteristic $p > 0$, and let $K = k((u))$ be the field of Laurent series over $K$. We study the skew polynomial ring $K[T, Φ]$, where $Φ$ is an endomorphism of $K$ that extends a Frobenius endomorphism of $k$. We give a description of the irreducible skew polynomials, develop an analogue of the theory of the Newton polygon in this context, and classify the similarity classes of irreducible elements.