论文标题
上行链路无人机网络中的大规模分类多个访问:有效的保密吞吐量在有限的反馈渠道下
Large-Scale Rate-Splitting Multiple Access in Uplink UAV Networks: Effective Secrecy Throughput Maximization Under Limited Feedback Channel
论文作者
论文摘要
无人机能够改善下一代无线系统的性能。具体而言,无人机可以作为空中基站(UAV-BS)利用,以支持偏远的未透明区域或临时需要高容量的环境中的合法地面用户。但是,他们的沟通性能既容易出现渠道估计错误和潜在的窃听。因此,我们调查了无人机上行链路的有效保密吞吐量,在大规模访问的情况下,每个合法用户都使用每个合法用户使用速率降低多重访问(RSMA)来安全传输。为了最大程度地提高上行链路中有效的网络保密吞吐量,传输速率与功率分配关系被公正为最大值优化问题,依赖于合法用户和潜在的窃听者(EVES)的现实不完美的CSI。然后,我们提出了与变量解耦的相关概率约束的新型转换,以便可以通过替代激活相关的块坐标良好的编程来解决我们的设计问题。在考虑的模型中,每个用户将两个消息的叠加传输到UAV-BS,每个用户具有不同的传输功率,而UAV-BS使用SIC技术来解码接收到的消息。鉴于问题的非跨性别性,它被脱钩成一对子问题。特别是,我们为每个用户的最佳速率分数分数得出了封闭的表达式。然后,鉴于每个用户的最佳速率分数分数,通过利用SPCA编程来计算每个用户的ε约束发射功率。
UAVs are capable of improving the performance of next generation wireless systems. Specifically, UAVs can be exploited as aerial base-stations (UAV-BS) for supporting legitimate ground users in remote uncovered areas or in environments temporarily requiring high capacity. However, their communication performance is prone to both channel estimation errors and potential eavesdropping. Hence, we investigate the effective secrecy throughput of the UAV-aided uplink, in which rate-splitting multiple access (RSMA) is employed by each legitimate user for secure transmission under the scenario of massive access. To maximize the effective network secrecy throughput in the uplink, the transmission rate vs. power allocation relationship is formulated as a max-min optimization problem, relying on realistic imperfect CSI of both the legitimate users and of the potential eavesdroppers (Eves). We then propose a novel transformation of the associated probabilistic constraints for decoupling the variables, so that our design problem can be solved by alternatively activating the related block coordinate decent programming. In the model considered, each user transmits a superposition of two messages to a UAV-BS, each having different transmit power and the UAV-BS uses a SIC technique to decode the received messages. Given the non-convexity of the problem, it is decoupled into a pair of sub-problems. In particular, we derive a closed form expression for the optimal rate-splitting fraction of each user. Then, given the optimal rate-splitting fraction of each user, the ε-constrainted transmit power of each user is calculated by harnessing SPCA programming.