论文标题
在Fano四倍的K3类型的Chow环上
On the Chow Ring of Fano Fourfolds of K3 type
论文作者
论文摘要
我们表明,从贝尔纳德(Shen-Vial)的意义上讲,最近由Bernardara,Fatighenti,Manivel和Tanturri建造的各种K3类型的Fano品种具有多重的Chow-Künneth分解。因此,这些Fano品种的Chow环与K3表面的行为一样。作为一方面,我们获得了一些炸毁的投影品种的弗朗切塔属性标准。
We show that a wide range of Fano varieties of K3 type, recently constructed by Bernardara, Fatighenti, Manivel and Tanturri, have a multiplicative Chow-Künneth decomposition, in the sense of Shen-Vial. It follows that the Chow ring of these Fano varieties behaves like that of K3 surfaces. As a side result, we obtain some criteria for the Franchetta property of blown-up projective varieties.