论文标题

在Fano四倍的K3类型的Chow环上

On the Chow Ring of Fano Fourfolds of K3 type

论文作者

Bolognesi, Michele, Laterveer, Robert

论文摘要

我们表明,从贝尔纳德(Shen-Vial)的意义上讲,最近由Bernardara,Fatighenti,Manivel和Tanturri建造的各种K3类型的Fano品种具有多重的Chow-Künneth分解。因此,这些Fano品种的Chow环与K3表面的行为一样。作为一方面,我们获得了一些炸毁的投影品种的弗朗切塔属性标准。

We show that a wide range of Fano varieties of K3 type, recently constructed by Bernardara, Fatighenti, Manivel and Tanturri, have a multiplicative Chow-Künneth decomposition, in the sense of Shen-Vial. It follows that the Chow ring of these Fano varieties behaves like that of K3 surfaces. As a side result, we obtain some criteria for the Franchetta property of blown-up projective varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源