论文标题

聚合物溶液中的关键波动:从临界到三个临界的交叉

Critical Fluctuations in Polymer Solutions: Crossover from Criticality to Tricriticality

论文作者

Anisimov, Mikhail A., Longo, Thomas J., Sengers, Jan V.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Critical fluctuations in fluids and fluid mixtures yield a nonanalytic asymptotic Ising-like critical thermodynamic behavior in terms of power laws with universal exponents. In polymer solutions, the amplitudes of these power laws depend on the degree of polymerization. Nonasymptotic behavior (upon the departure from the critical point) is particularly interesting in the case of polymer solutions, where it is governed by a competition between the correlation length of the critical fluctuations and the radius of gyration of the polymer molecules. If the correlation length is the dominant length scale, Ising-like critical behavior is observed. If, however, the radius of gyration exceeds the correlation length, tricritical behavior with mean-field critical exponents is observed. The Ising-like critical region shrinks with the increase of the polymer molecular weight. In the limit of an infinite degree of polymerization, the Ising-like critical region vanishes, yielding to theta-point tricriticality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源