论文标题
部分可观测时空混沌系统的无模型预测
Going Further With Winograd Convolutions: Tap-Wise Quantization for Efficient Inference on 4x4 Tile
论文作者
论文摘要
当今的大多数计算机视觉管道都是围绕深度神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以较少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ f_2 $的版本时,3x3卷积的操作计数减少了2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,它在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和较高的计算开销,以在空间和Winograd域之间转换输入和输出数据。 为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们提出了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA的能源效率可提高1.85倍,而最先进的分段和检测网络的端到端速度最高可达到1.83倍。
Most of today's computer vision pipelines are built around deep neural networks, where convolution operations require most of the generally high compute effort. The Winograd convolution algorithm computes convolutions with fewer MACs compared to the standard algorithm, reducing the operation count by a factor of 2.25x for 3x3 convolutions when using the version with 2x2-sized tiles $F_2$. Even though the gain is significant, the Winograd algorithm with larger tile sizes, i.e., $F_4$, offers even more potential in improving throughput and energy efficiency, as it reduces the required MACs by 4x. Unfortunately, the Winograd algorithm with larger tile sizes introduces numerical issues that prevent its use on integer domain-specific accelerators and higher computational overhead to transform input and output data between spatial and Winograd domains. To unlock the full potential of Winograd $F_4$, we propose a novel tap-wise quantization method that overcomes the numerical issues of using larger tiles, enabling integer-only inference. Moreover, we present custom hardware units that process the Winograd transformations in a power- and area-efficient way, and we show how to integrate such custom modules in an industrial-grade, programmable DSA. An extensive experimental evaluation on a large set of state-of-the-art computer vision benchmarks reveals that the tap-wise quantization algorithm makes the quantized Winograd $F_4$ network almost as accurate as the FP32 baseline. The Winograd-enhanced DSA achieves up to 1.85x gain in energy efficiency and up to 1.83x end-to-end speed-up for state-of-the-art segmentation and detection networks.