论文标题
图形产品组的von Neumann代数的刚度。 I.自动形态的结构
Rigidity for von Neumann algebras of graph product groups. I. Structure of automorphisms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper we study various rigidity aspects of the von Neumann algebra $L(Γ)$ where $Γ$ is a graph product group \cite{Gr90} whose underlying graph is a certain cycle of cliques and the vertex groups are the wreath-like product property (T) groups introduced recently in \cite{CIOS21}. Using an approach that combines methods from Popa's deformation/rigidity theory with new techniques pertaining to graph product algebras, we describe all symmetries of these von Neumann algebras and reduced C$^*$-algebras by establishing formulas in the spirit of Genevois and Martin's results on automorphisms of graph product groups \cite{GM19}.