论文标题

D-Itags:一种动态交织的方法,用于弹性任务分配,调度和运动计划

D-ITAGS: A Dynamic Interleaved Approach to Resilient Task Allocation, Scheduling, and Motion Planning

论文作者

Neville, Glen, Chernova, Sonia, Ravichandar, Harish

论文摘要

复杂的多目标任务需要在多个相互连接的级别(例如联盟形成,调度和运动计划)上协调异质机器人。动态变化(例如传感器和执行器故障,通信损失和意外延迟)加剧了这一挑战。 我们将动态迭代任务分配图搜索(D-ITAGS)介绍到\ textit {同时}地址在涉及异构团队的动态设置中,地址为联盟组建,调度和运动计划。 D-Itag通过两个关键特征实现了弹性:i)交错执行,ii)有针对性的维修。 \ textit {交错执行}可以有效地搜索每一层的解决方案,同时避免与其他层不兼容。 \ textIt {目标修复}识别并修复现有解决方案的一部分,并在保存其余部分的同时受到给定破坏的影响。除了算法贡献外,我们还提供理论上的见解,以了解这些设置中时间和资源最优性之间固有的权衡,并在计划次优度上得出有意义的界限。 我们的实验表明,在动态设置中,i)d-itag的速度要比从头开始的重新计算要快得多,而溶液质量几乎没有损失,ii)理论次优界限在实践中始终保持。

Complex, multi-objective missions require the coordination of heterogeneous robots at multiple inter-connected levels, such as coalition formation, scheduling, and motion planning. This challenge is exacerbated by dynamic changes, such as sensor and actuator failures, communication loss, and unexpected delays. We introduce Dynamic Iterative Task Allocation Graph Search (D-ITAGS) to \textit{simultaneously} address coalition formation, scheduling, and motion planning in dynamic settings involving heterogeneous teams. D-ITAGS achieves resilience via two key characteristics: i) interleaved execution, and ii) targeted repair. \textit{Interleaved execution} enables an effective search for solutions at each layer while avoiding incompatibility with other layers. \textit{Targeted repair} identifies and repairs parts of the existing solution impacted by a given disruption, while conserving the rest. In addition to algorithmic contributions, we provide theoretical insights into the inherent trade-off between time and resource optimality in these settings and derive meaningful bounds on schedule suboptimality. Our experiments reveal that i) D-ITAGS is significantly faster than recomputation from scratch in dynamic settings, with little to no loss in solution quality, and ii) the theoretical suboptimality bounds consistently hold in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源