论文标题

通过机器学习和沙普利值预测赤道等离子体气泡

Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values

论文作者

Reddy, S. A., Forsyth, C., Aruliah, A., Smith, A., Bortnik, J., Aa, E., Kataria, D. O., Lewis, G.

论文摘要

在这项研究中,我们介绍了赤道等离子体气泡(APE)的AI预测,这是一种机器学习模型,可以准确预测群体上的电离层气泡指数(IBI)。 IBI是等离子体密度扰动与磁场的扰动之间的相关性($ r^2 $),其源可以是赤道等离子体气泡(EPB)。已经研究了EPB多年了,但是他们的日常变异性使他们预测了它们是一个巨大的挑战。我们建立了一个合奏机器学习模型来预测IBI。我们以1秒的分辨率使用2014-22的数据,并将其从时间序列转换为具有相应的EPB $ r^2 $(0-1)的6维空间,该空间充当标签。 APE在所有指标上的表现都很好,表现出技能,关联和均方根误差评分分别为0.96、0.98和0.08。该模型在美国/大西洋部门,春分和太阳活动较高时,在美国/大西洋部门中执行最佳的肺泡。这很有希望,因为EPB最有可能在这些时期内发生。沙普利值表明,f10.7是推动预测的最重要特征,而纬度最少。该分析还检查了特征之间的关系,这揭示了对EPB气候学的新见解。最后,选择功能的选择意味着可以在对其发作的额外调查后将猿扩展为预测EPB。

In this study we present AI Prediction of Equatorial Plasma Bubbles (APE), a machine learning model that can accurately predict the Ionospheric Bubble Index (IBI) on the Swarm spacecraft. IBI is a correlation ($R^2$) between perturbations in plasma density and the magnetic field, whose source can be Equatorial Plasma Bubbles (EPBs). EPBs have been studied for a number of years, but their day-to-day variability has made predicting them a considerable challenge. We build an ensemble machine learning model to predict IBI. We use data from 2014-22 at a resolution of 1sec, and transform it from a time-series into a 6-dimensional space with a corresponding EPB $R^2$ (0-1) acting as the label. APE performs well across all metrics, exhibiting a skill, association and root mean squared error score of 0.96, 0.98 and 0.08 respectively. The model performs best post-sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods. Shapley values reveal that F10.7 is the most important feature in driving the predictions, whereas latitude is the least. The analysis also examines the relationship between the features, which reveals new insights into EPB climatology. Finally, the selection of the features means that APE could be expanded to forecasting EPBs following additional investigations into their onset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源