论文标题
Phy-Taylor:基于物理模型的深神经网络
Phy-Taylor: Physics-Model-Based Deep Neural Networks
论文作者
论文摘要
应用于物理工程系统的纯数据驱动的深神经网络(DNN)可以推断出违反物理法的关系,从而导致意外后果。为了应对这一挑战,我们提出了一个基于物理模型的DNN框架,即Phy-Taylor,该框架以物理知识加速了学习合规的表示。 Phy-Taylor框架做出了两个关键贡献。它引入了一种新的建筑物理兼容神经网络(PHN),并具有新颖的合规机制,我们称{\ em物理引导的神经网络编辑\}。 PHN旨在直接捕获受物质量启发的非线性,例如动能,势能,电力和空气动力阻力。为此,PHN增强了具有两个关键组成部分的神经网络层:(i)泰勒级数序列的非线性函数促进物理知识的扩展,以及(ii)减轻噪声影响的抑制器。神经网络编辑机制进一步修改了网络链接,并且激活功能与物理知识一致。作为扩展,我们还提出了一个自我校正的Phy-Taylor框架,该框架介绍了两个其他功能:(i)基于物理模型的安全关系学习,以及(ii)当发生安全性违规时自动输出校正。通过实验,我们表明(通过直接表达难以学习的非线性并通过限制依赖关系)Phy-Taylor的特征较少的参数以及明显加速的训练过程,同时提供了增强的模型鲁棒性和准确性。
Purely data-driven deep neural networks (DNNs) applied to physical engineering systems can infer relations that violate physics laws, thus leading to unexpected consequences. To address this challenge, we propose a physics-model-based DNN framework, called Phy-Taylor, that accelerates learning compliant representations with physical knowledge. The Phy-Taylor framework makes two key contributions; it introduces a new architectural Physics-compatible neural network (PhN), and features a novel compliance mechanism, we call {\em Physics-guided Neural Network Editing\}. The PhN aims to directly capture nonlinearities inspired by physical quantities, such as kinetic energy, potential energy, electrical power, and aerodynamic drag force. To do so, the PhN augments neural network layers with two key components: (i) monomials of Taylor series expansion of nonlinear functions capturing physical knowledge, and (ii) a suppressor for mitigating the influence of noise. The neural-network editing mechanism further modifies network links and activation functions consistently with physical knowledge. As an extension, we also propose a self-correcting Phy-Taylor framework that introduces two additional capabilities: (i) physics-model-based safety relationship learning, and (ii) automatic output correction when violations of safety occur. Through experiments, we show that (by expressing hard-to-learn nonlinearities directly and by constraining dependencies) Phy-Taylor features considerably fewer parameters, and a remarkably accelerated training process, while offering enhanced model robustness and accuracy.