论文标题

StylesWap:基于样式的发电机赋予强大的面部交换

StyleSwap: Style-Based Generator Empowers Robust Face Swapping

论文作者

Xu, Zhiliang, Zhou, Hang, Hong, Zhibin, Liu, Ziwei, Liu, Jiaming, Guo, Zhizhi, Han, Junyu, Liu, Jingtuo, Ding, Errui, Wang, Jingdong

论文摘要

鉴于其广泛的应用,已经对人面部交换的任务进行了许多尝试。尽管现有方法主要依赖于乏味的网络和损失设计,但它们仍然在源和目标面之间的信息平衡中挣扎,并且倾向于产生可见的人工制品。在这项工作中,我们引入了一个名为StylesWap的简洁有效的框架。我们的核心思想是利用基于样式的生成器来增强高保真性和稳健的面部交换,因此可以采用发电机的优势来优化身份相似性。我们仅通过最小的修改来确定,stylegan2体系结构可以成功地处理来自源和目标的所需信息。此外,受到TORGB层的启发,进一步设计了一个交换驱动的面具分支以改善信息的融合。此外,可以采用stylegan倒置的优势。特别是,提出了交换引导的ID反转策略来优化身份相似性。广泛的实验验证了我们的框架会产生高质量的面部交换结果,从而优于最先进的方法,既有定性和定量的方法。

Numerous attempts have been made to the task of person-agnostic face swapping given its wide applications. While existing methods mostly rely on tedious network and loss designs, they still struggle in the information balancing between the source and target faces, and tend to produce visible artifacts. In this work, we introduce a concise and effective framework named StyleSwap. Our core idea is to leverage a style-based generator to empower high-fidelity and robust face swapping, thus the generator's advantage can be adopted for optimizing identity similarity. We identify that with only minimal modifications, a StyleGAN2 architecture can successfully handle the desired information from both source and target. Additionally, inspired by the ToRGB layers, a Swapping-Driven Mask Branch is further devised to improve information blending. Furthermore, the advantage of StyleGAN inversion can be adopted. Particularly, a Swapping-Guided ID Inversion strategy is proposed to optimize identity similarity. Extensive experiments validate that our framework generates high-quality face swapping results that outperform state-of-the-art methods both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源