论文标题
半空间中毛细血管超曲面的Minkowski型不平等
A Minkowski-type inequality for capillary hypersurfaces in a half-space
论文作者
论文摘要
在本文中,我们研究了半空间中毛细血管超曲面的反向平均曲率类型的流动。我们确定了该流量的全球解决方案的存在,并证明它随着时间的无限而平稳地收敛到球形上限。结果,我们为星形和平均凸毛细管超出曲面提供了新的Minkowski型不等式,用于整个接触角$θ\ in(0,π)$。
In this article, we investigate a flow of inverse mean curvature type for capillary hypersurfaces in the half-space. We establish the global existence of solutions for this flow and demonstrate that it converges smoothly to a spherical cap as time tends to infinity. As a result, we derive a new Minkowski-type inequality for star-shaped and mean convex capillary hypersurfaces for the whole range of contact angle $θ\in (0,π)$.