论文标题

感知多模式流动性模式:使用蓝牙信标和移动应用程序对赫尔辛基的案例研究

Sensing Multi-modal Mobility Patterns: A Case Study of Helsinki using Bluetooth Beacons and a Mobile Application

论文作者

Huang, Zhiren, de Villafranca, Alonso Espinosa Mireles, Sipetas, Charalampos

论文摘要

详细了解城市地区的多模式流动性模式对于以用户需求为中心的公共基础设施计划,运输管理和设计公共交通(PT)服务至关重要。但是,即使随着无处不在的计算的兴起,及时感知城市流动性模式仍然是一个挑战。传统的数据源无法完全捕获挨家挨户的轨迹,并依靠一组模型和假设来填补其空白。这项研究重点是通过HSL的移动票务应用程序收集的新型数据源,该应用是赫尔辛基首都地区的本地PT操作员。 HSL的数据集名为TravelSense,通过蓝牙信标,手机GPS和电话OS活动检测记录赫尔辛基地区内匿名旅行者的动作。在这项研究中,对TravelSense数据集进行了处理和分析,以揭示时空流动性模式,这是研究其在迁移率传感工作中的潜力的一部分。数据集的代表性通过两个外部数据源验证 - 手机旅行数据(需求模式)和旅行调查数据(用于模态共享)。最后,通过对研究区域内多模式旅行中的PT转移的初步分析来介绍该数据集可以产生的实际观点。

Detailed understanding of multi-modal mobility patterns within urban areas is crucial for public infrastructure planning, transportation management, and designing public transport (PT) services centred on users' needs. Yet, even with the rise of ubiquitous computing, sensing urban mobility patterns in a timely fashion remains a challenge. Traditional data sources fail to fully capture door-to-door trajectories and rely on a set of models and assumptions to fill their gaps. This study focuses on a new type of data source that is collected through the mobile ticketing app of HSL, the local PT operator of the Helsinki capital region. HSL's dataset called TravelSense, records anonymized travelers' movements within the Helsinki region by means of Bluetooth beacons, mobile phone GPS, and phone OS activity detection. In this study, TravelSense dataset is processed and analyzed to reveal spatio-temporal mobility patterns as part of investigating its potentials in mobility sensing efforts. The representativeness of the dataset is validated with two external data sources - mobile phone trip data (for demand patterns) and travel survey data (for modal share). Finally, practical perspectives that this dataset can yield are presented through a preliminary analysis of PT transfers in multimodal trips within the study area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源