论文标题
部分可观测时空混沌系统的无模型预测
MPC-Pipe: an Efficient Pipeline Scheme for Secure Multi-party Machine Learning Inference
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Multi-party computing (MPC) has been gaining popularity as a secure computing model over the past few years. However, prior works have demonstrated that MPC protocols still pay substantial performance penalties compared to plaintext, particularly when applied to ML algorithms. The overhead is due to added computation and communication costs. Prior studies, as well as our own analysis, found that most MPC protocols today sequentially perform communication and computation. The participating parties must compute on their shares first and then perform data communication to allow the distribution of new secret shares before proceeding to the next computation step. In this work, we show that serialization is unnecessary, particularly in the context of ML computations (both in Convolutional neural networks and in Transformer-based models). We demonstrate that it is possible to carefully orchestrate the computation and communication steps to overlap. We propose MPC-Pipe, an efficient MPC system for both training and inference of ML workloads, which pipelines computations and communications in an MPC protocol during the online phase. MPC-Pipe proposes three pipeline schemes to optimize the online phase of ML in the semi-honest majority adversary setting. We implement MPC-Pipe by augmenting a modified version of CrypTen, which separates online and offline phases. We evaluate the end-to-end system performance benefits of the online phase of MPC using deep neural networks (VGG16, ResNet50) and Transformers using different network settings. We show that MPC-Pipe can improve the throughput and latency of ML workloads.