论文标题
跨全球科学合作的托管网络服务用于Exascale数据运动
Managed Network Services for Exascale Data Movement Across Large Global Scientific Collaborations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Unique scientific instruments designed and operated by large global collaborations are expected to produce Exabyte-scale data volumes per year by 2030. These collaborations depend on globally distributed storage and compute to turn raw data into science. While all of these infrastructures have batch scheduling capabilities to share compute, Research and Education networks lack those capabilities. There is thus uncontrolled competition for bandwidth between and within collaborations. As a result, data "hogs" disk space at processing facilities for much longer than it takes to process, leading to vastly over-provisioned storage infrastructures. Integrated co-scheduling of networks as part of high-level managed workflows might reduce these storage needs by more than an order of magnitude. This paper describes such a solution, demonstrates its functionality in the context of the Large Hadron Collider (LHC) at CERN, and presents the next-steps towards its use in production.