论文标题

MultiroBolearn:多机器人深钢筋学习的开源框架

MultiRoboLearn: An open-source Framework for Multi-robot Deep Reinforcement Learning

论文作者

Chen, Junfeng, Deng, Fuqin, Gao, Yuan, Hu, Junjie, Guo, Xiyue, Liang, Guanqi, Lam, Tin Lun

论文摘要

众所周知,很难拥有一个可靠且可靠的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们建议并为称为MultiroBolearn1的多机器人系统建立一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟场景,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用离散和连续的动作空间中的不同类型的多代理深钢筋学习算法证明了框架使用两个真实情况的通用性,可扩展性和能力。

It is well known that it is difficult to have a reliable and robust framework to link multi-agent deep reinforcement learning algorithms with practical multi-robot applications. To fill this gap, we propose and build an open-source framework for multi-robot systems called MultiRoboLearn1. This framework builds a unified setup of simulation and real-world applications. It aims to provide standard, easy-to-use simulated scenarios that can also be easily deployed to real-world multi-robot environments. Also, the framework provides researchers with a benchmark system for comparing the performance of different reinforcement learning algorithms. We demonstrate the generality, scalability, and capability of the framework with two real-world scenarios2 using different types of multi-agent deep reinforcement learning algorithms in discrete and continuous action spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源