论文标题
部分可观测时空混沌系统的无模型预测
Target Features Affect Visual Search, A Study of Eye Fixations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Visual Search is referred to the task of finding a target object among a set of distracting objects in a visual display. In this paper, based on an independent analysis of the COCO-Search18 dataset, we investigate how the performance of human participants during visual search is affected by different parameters such as the size and eccentricity of the target object. We also study the correlation between the error rate of participants and search performance. Our studies show that a bigger and more eccentric target is found faster with fewer number of fixations. Our code for the graphics are publicly available at https://github.com/ManooshSamiei/COCOSearch18_Analysis.