论文标题

在线多摄像头校准

Online Multi Camera-IMU Calibration

论文作者

Hartzer, Jacob, Saripalli, Srikanth

论文摘要

视觉惯性导航系统的能力很强大,能够准确估计移动系统在复杂环境中排除使用全球导航卫星系统的本地化。但是,这些导航系统依赖于所使用的传感器的准确和最新的临时校准。因此,这些参数的在线估计器在弹性系统中很有用。本文介绍了现有的基于卡尔曼过滤器的框架的扩展,以估算和校准多相机IMU系统的外部参数。除了将过滤器框架扩展到包括多个摄像机传感器外,还重新制定了测量模型,以利用通常在基准检测软件中提供的测量数据。使用二级过滤层来估计没有传感器数据的闭环反馈的时间翻译参数。与离线方法相比,使用实验性校准结果,包括使用具有非重叠字段的摄像机来验证滤波器公式的稳定性和准确性。最后,广义过滤代码已经开源,可以在线提供。

Visual-inertial navigation systems are powerful in their ability to accurately estimate localization of mobile systems within complex environments that preclude the use of global navigation satellite systems. However, these navigation systems are reliant on accurate and up-to-date temporospatial calibrations of the sensors being used. As such, online estimators for these parameters are useful in resilient systems. This paper presents an extension to existing Kalman Filter based frameworks for estimating and calibrating the extrinsic parameters of multi-camera IMU systems. In addition to extending the filter framework to include multiple camera sensors, the measurement model was reformulated to make use of measurement data that is typically made available in fiducial detection software. A secondary filter layer was used to estimate time translation parameters without closed-loop feedback of sensor data. Experimental calibration results, including the use of cameras with non-overlapping fields of view, were used to validate the stability and accuracy of the filter formulation when compared to offline methods. Finally the generalized filter code has been open-sourced and is available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源