论文标题
在Dedekind Zeta功能的Northcott财产上
On the Northcott property of Dedekind zeta functions
论文作者
论文摘要
诺斯科特(Northcott)的特殊价值是Dedekind Zeta功能和更通用的动机$ l $ - 功能,由Pazuki和Pengo定义。我们研究此属性,以进行对Dedekind Zeta功能的任何复杂评估。结果比Li和作者先前的作品中的功能场案例所证明的结果更加精致和微妙,因为它们在琐碎的零附近包括一些令人惊讶的行为。这些技术包括分析和计算机辅助论点的混合物。
The Northcott property for special values of Dedekind zeta functions and more general motivic $L$-functions was defined by Pazuki and Pengo. We investigate this property for any complex evaluation of Dedekind zeta functions. The results are more delicate and subtle than what was proven for the function field case in previous work of Li and the authors, since they include some surprising behavior in the neighborhood of the trivial zeros. The techniques include a mixture of analytic and computer assisted arguments.