论文标题

带有三层抽样和全景代表的城市尺度增量神经映射

City-scale Incremental Neural Mapping with Three-layer Sampling and Panoptic Representation

论文作者

Shi, Yongliang, Yang, Runyi, Li, Pengfei, Wu, Zirui, Zhao, Hao, Zhou, Guyue

论文摘要

神经隐式表示最近引起了机器人界的广泛关注,因为它们表现得很连续和紧凑。但是,基于稀疏激光雷达输入​​的城市规模持续隐式密集映射仍然是一个不足的挑战。为此,我们成功地构建了一个城市级的持续神经映射系统,其中包含环境级别和实例级建模。给定稀疏发光点云流,它维护了一个动态生成模型,该模型将3D坐标映射到签名的距离字段(SDF)值。为了解决城市规模空间中不同级别的几何信息的困难,我们提出了一种定制的三层抽样策略,以动态采样全局,本地和近乎表面的域。同时,为了在不完整的观察结果下实现实例的高保真度映射,引入了特定于类别的先验,以更好地对几何细节进行建模。我们使用定量和定性结果,对公共Semantickitti数据集进行了评估,并证明了新提出的三层抽样策略和全景表示的重要性。代码和模型将公开可用。

Neural implicit representations are drawing a lot of attention from the robotics community recently, as they are expressive, continuous and compact. However, city-scale continual implicit dense mapping based on sparse LiDAR input is still an under-explored challenge. To this end, we successfully build a city-scale continual neural mapping system with a panoptic representation that consists of environment-level and instance-level modelling. Given a stream of sparse LiDAR point cloud, it maintains a dynamic generative model that maps 3D coordinates to signed distance field (SDF) values. To address the difficulty of representing geometric information at different levels in city-scale space, we propose a tailored three-layer sampling strategy to dynamically sample the global, local and near-surface domains. Meanwhile, to realize high fidelity mapping of instance under incomplete observation, category-specific prior is introduced to better model the geometric details. We evaluate on the public SemanticKITTI dataset and demonstrate the significance of the newly proposed three-layer sampling strategy and panoptic representation, using both quantitative and qualitative results. Codes and model will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源