论文标题

神经反馈回路的向后达到性分析:线性和非线性系统的技术

Backward Reachability Analysis of Neural Feedback Loops: Techniques for Linear and Nonlinear Systems

论文作者

Rober, Nicholas, Katz, Sydney M., Sidrane, Chelsea, Yel, Esen, Everett, Michael, Kochenderfer, Mykel J., How, Jonathan P.

论文摘要

随着神经网络(NNS)在控制诸如车辆控制之类的安全性应用中变得越来越普遍,因此越来越需要证明具有NN组件的系统是安全的。本文介绍了一组往后无关的方法,用于神经反馈循环(NFLS)的安全认证,即具有NN控制策略的闭环系统。尽管已经为没有NN组件的系统制定了向后的可及性策略,但NN激活功能的非线性和NN重量矩阵的一般非可逆性使NFL的向后触及能力是具有挑战性的问题。为了避免与NNS向后传播集合相关的困难,我们引入了一个框架,该框架利用标准的NN分析工具有效地找到了对反向投影(BP)集的过度评估,即,即NN策略将系统策略引导到给定的目标集。我们提出了用于计算BP在线性和非线性系统的近似值上,具有由Feedforward NNS表示的控制策略的近似值,并提出了计算有效的策略。我们使用各种模型的数值结果来展示所提出的算法,包括6D系统的安全认证的演示。

As neural networks (NNs) become more prevalent in safety-critical applications such as control of vehicles, there is a growing need to certify that systems with NN components are safe. This paper presents a set of backward reachability approaches for safety certification of neural feedback loops (NFLs), i.e., closed-loop systems with NN control policies. While backward reachability strategies have been developed for systems without NN components, the nonlinearities in NN activation functions and general noninvertibility of NN weight matrices make backward reachability for NFLs a challenging problem. To avoid the difficulties associated with propagating sets backward through NNs, we introduce a framework that leverages standard forward NN analysis tools to efficiently find over-approximations to backprojection (BP) sets, i.e., sets of states for which an NN policy will lead a system to a given target set. We present frameworks for calculating BP over approximations for both linear and nonlinear systems with control policies represented by feedforward NNs and propose computationally efficient strategies. We use numerical results from a variety of models to showcase the proposed algorithms, including a demonstration of safety certification for a 6D system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源