论文标题

DMAP:分布式的形态注意力政策,用于学习与身体不断变化的运动

DMAP: a Distributed Morphological Attention Policy for Learning to Locomote with a Changing Body

论文作者

Chiappa, Alberto Silvio, Vargas, Alessandro Marin, Mathis, Alexander

论文摘要

生物学和人造药物需要处理现实世界中的不断变化。我们在四个经典的连续控制环境中研究了这个问题,并通过形态扰动增强。当不同身体部位的长度和厚度变化时,学习势头是挑战性的,因为需要控制政策才能适应形态以成功平衡和推进代理。我们表明,基于本体感受状态的控制策略的身体配置高度可变,而(甲骨文)代理可以访问学习扰动的编码的(甲骨文)的性能要好得多。我们介绍了DMAP,这是一种以生物学启发的,基于注意力的策略网络体系结构。 DMAP结合了独立的本体感受处理,分布式策略与每个关节的单个控制器以及一个注意机制,从不同身体部位到不同控制器的动态门感官信息。尽管无法访问(隐藏的)形态信息,但可以在所有考虑的环境中端到端训练DMAP,整体匹配或超过Oracle代理的性能。因此,通过生物运动控制实施原理的DMAP为学习具有挑战性的感觉运动任务提供了强烈的感应偏见。总体而言,我们的工作证实了这些原则在挑战运动任务中的力量。

Biological and artificial agents need to deal with constant changes in the real world. We study this problem in four classical continuous control environments, augmented with morphological perturbations. Learning to locomote when the length and the thickness of different body parts vary is challenging, as the control policy is required to adapt to the morphology to successfully balance and advance the agent. We show that a control policy based on the proprioceptive state performs poorly with highly variable body configurations, while an (oracle) agent with access to a learned encoding of the perturbation performs significantly better. We introduce DMAP, a biologically-inspired, attention-based policy network architecture. DMAP combines independent proprioceptive processing, a distributed policy with individual controllers for each joint, and an attention mechanism, to dynamically gate sensory information from different body parts to different controllers. Despite not having access to the (hidden) morphology information, DMAP can be trained end-to-end in all the considered environments, overall matching or surpassing the performance of an oracle agent. Thus DMAP, implementing principles from biological motor control, provides a strong inductive bias for learning challenging sensorimotor tasks. Overall, our work corroborates the power of these principles in challenging locomotion tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源