论文标题

在未知动态环境中快速运动计划的障碍物识别和椭圆形分解

Obstacle Identification and Ellipsoidal Decomposition for Fast Motion Planning in Unknown Dynamic Environments

论文作者

Kaymaz, Mehmetcan, Ure, Nazim Kemal

论文摘要

在未知环境中存在动态障碍的情况下,避免碰撞是无人系统最关键的挑战之一。在本文中,我们提出了一种方法,该方法鉴定了椭圆形的障碍,以估计线性和角度的障碍速度。我们提出的方法是基于任何对象的想法,可以由椭圆形表示。为了实现这一目标,我们提出了一种基于高斯混合模型,kyachiyan算法和改进算法的变异贝叶斯估计的方法。与现有的基于优化的方法不同,我们提出的方法不需要了解集群数量,并且可以实时操作。此外,我们定义了一个基于椭圆形的特征向量,以匹配两个及时的接近点帧的障碍。我们的方法可以应用于具有静态和动态障碍的任何环境,包括具有旋转障碍的环境。我们将算法与其他聚类方法进行比较,并表明当与轨迹计划器结合使用时,整个系统可以在存在动态障碍的情况下有效地穿越未知环境。

Collision avoidance in the presence of dynamic obstacles in unknown environments is one of the most critical challenges for unmanned systems. In this paper, we present a method that identifies obstacles in terms of ellipsoids to estimate linear and angular obstacle velocities. Our proposed method is based on the idea of any object can be approximately expressed by ellipsoids. To achieve this, we propose a method based on variational Bayesian estimation of Gaussian mixture model, the Kyachiyan algorithm, and a refinement algorithm. Our proposed method does not require knowledge of the number of clusters and can operate in real-time, unlike existing optimization-based methods. In addition, we define an ellipsoid-based feature vector to match obstacles given two timely close point frames. Our method can be applied to any environment with static and dynamic obstacles, including the ones with rotating obstacles. We compare our algorithm with other clustering methods and show that when coupled with a trajectory planner, the overall system can efficiently traverse unknown environments in the presence of dynamic obstacles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源