论文标题
使用Zonotopes进行3D MAPAIDED GNSS本地化的设置值匹配
Set-Valued Shadow Matching Using Zonotopes for 3-D Map-Aided GNSS Localization
论文作者
论文摘要
与许多返回点值估计值的城市本地化方法不同,设定值的表示可以通过确保可能的位置的连续体遵守安全限制来实现鲁棒性。具有设置值估计的一种策略是基于GNSS的阴影匹配〜(SM),其中使用了三维(3-D)地图来计算GNSS阴影(在视线范围内被阻止)。但是,SM需要一个值值的网格来进行计算障碍,并且精确度限制了网格分辨率。我们建议用于设置值3-D MAPAID的GNSS本地化的Zonotope Shadow匹配(ZSM)。 ZSM代表建筑物和GNSS阴影,使用约束的ZONOTOPE,这是一种凸多属表示,该表示可以使用快速矢量串联操作实现传播设置值估计。 ZSM从粗糙的设定值开始,根据接收到的载体到噪声密度所判断的接收器在每个阴影内部或外部的接收器。我们使用模拟实验在简单的3-D示例图和旧金山密集的3D地图上展示了算法的性能。
Unlike many urban localization methods that return point-valued estimates, a set-valued representation enables robustness by ensuring that a continuum of possible positions obeys safety constraints. One strategy with the potential for set-valued estimation is GNSS-based shadow matching~(SM), where one uses a three-dimensional (3-D) map to compute GNSS shadows (where line-of-sight is blocked). However, SM requires a point-valued grid for computational tractability, with accuracy limited by grid resolution. We propose zonotope shadow matching (ZSM) for set-valued 3-D map-aided GNSS localization. ZSM represents buildings and GNSS shadows using constrained zonotopes, a convex polytope representation that enables propagating set-valued estimates using fast vector concatenation operations. Starting from a coarse set-valued position, ZSM refines the estimate depending on the receiver being inside or outside each shadow as judged by received carrier-to-noise density. We demonstrated our algorithm's performance using simulated experiments on a simple 3-D example map and on a dense 3-D map of San Francisco.