论文标题

我们如何衡量对视觉数据通信的信任?

How Do We Measure Trust in Visual Data Communication?

论文作者

Elhamdadi, Hamza, Gaba, Aimen, Kim, Yea-Seul, Xiong, Cindy

论文摘要

信任是可视化设计师和读者之间有效的视觉数据通信的基础。尽管个人经验和偏好会影响读者对可视化的信任,但可视化设计人员可以利用设计技术来创建可视化的可唤起“校准信任”的可视化,读者在批判性地评估了所提供的信息后到达。为了系统地了解促使读者进行“校准信任”的原因,我们首先必须为自己配备可靠且有效的方法来衡量信任。计算机科学和数据可视化研究人员尚未就信任定义或度量标准达成共识,这对于在人数据互动中建立全面的信任模型至关重要。另一方面,社会科学家和行为经济学家已经制定并完善了可以衡量广义和人际信任的指标,可视化社区可以参考,修改和适应我们的需求。在本文中,我们收集了评估来自其他学科的信任的现有方法,并讨论如何使用它们来测量,定义和建模数据可视化研究的信任。具体来说,我们讨论了来自社会科学的定量调查,行为经济学的信任游戏,通过衡量信念更新来衡量信任以及通过感知方法衡量信任。我们评估了这些方法的潜在问题,并考虑如何系统地将它们应用于可视化研究。

Trust is fundamental to effective visual data communication between the visualization designer and the reader. Although personal experience and preference influence readers' trust in visualizations, visualization designers can leverage design techniques to create visualizations that evoke a "calibrated trust," at which readers arrive after critically evaluating the information presented. To systematically understand what drives readers to engage in "calibrated trust," we must first equip ourselves with reliable and valid methods for measuring trust. Computer science and data visualization researchers have not yet reached a consensus on a trust definition or metric, which are essential to building a comprehensive trust model in human-data interaction. On the other hand, social scientists and behavioral economists have developed and perfected metrics that can measure generalized and interpersonal trust, which the visualization community can reference, modify, and adapt for our needs. In this paper, we gather existing methods for evaluating trust from other disciplines and discuss how we might use them to measure, define, and model trust in data visualization research. Specifically, we discuss quantitative surveys from social sciences, trust games from behavioral economics, measuring trust through measuring belief updating, and measuring trust through perceptual methods. We assess the potential issues with these methods and consider how we can systematically apply them to visualization research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源