论文标题

FID灯:有效有效的检索型文本生成

FiD-Light: Efficient and Effective Retrieval-Augmented Text Generation

论文作者

Hofstätter, Sebastian, Chen, Jiecao, Raman, Karthik, Zamani, Hamed

论文摘要

检索授权的生成模型比独立语言模型提供了许多好处:除了对给定查询的文本答案外,它们提供了从可更新知识库中检索到的出处项目。但是,它们也是更复杂的系统,需要处理长输入。在这项工作中,我们介绍了FID Light,以强烈提高最先进的检索功能模型的效率,同时保持相同的有效性。我们的FID-LIGHT模型将信息流从编码器(分别编码段落)到解码器(使用串联编码表示)约束。此外,我们通过文本源指针通过重新排列的功能来调整FID光,以提高排名最高的出处精度。我们对七个知识密集任务(KILT)的多种多样的实验表明,FID光线始终提高了查询潜伏期和有效性之间的帕累托前沿。带有源指向的FID光设置为六个苏格兰短裙任务的新最新结果,用于合并文本生成和出处检索评估,同时保持合理的效率。

Retrieval-augmented generation models offer many benefits over standalone language models: besides a textual answer to a given query they provide provenance items retrieved from an updateable knowledge base. However, they are also more complex systems and need to handle long inputs. In this work, we introduce FiD-Light to strongly increase the efficiency of the state-of-the-art retrieval-augmented FiD model, while maintaining the same level of effectiveness. Our FiD-Light model constrains the information flow from the encoder (which encodes passages separately) to the decoder (using concatenated encoded representations). Furthermore, we adapt FiD-Light with re-ranking capabilities through textual source pointers, to improve the top-ranked provenance precision. Our experiments on a diverse set of seven knowledge intensive tasks (KILT) show FiD-Light consistently improves the Pareto frontier between query latency and effectiveness. FiD-Light with source pointing sets substantial new state-of-the-art results on six KILT tasks for combined text generation and provenance retrieval evaluation, while maintaining reasonable efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源