论文标题
黑洞积聚磁盘中的电子散布时间延迟
An Electron-Scattering Time Delay in Black Hole Accretion Disks
论文作者
论文摘要
通用到黑洞X射线二进制文件,高频软滞后滞后在难以相互之间的状态过渡期间越来越长,从$ {\ sillssim} 1〜 {\ rm MS} $演变为$ {\ sim} 10〜 {\ rm MS} $。软滞后的生产机制是非热冠状辐照的热盘重新处理。 X射线混响模型解释了磁盘外部的轻轨时间延迟,但假设对电子散射主导的磁盘大气中的辐射进行了瞬时重新处理。我们将这种被忽视的散射时间延迟建模为在$α$ disk气氛中的随机行走,并具有近似的不透明性。为了解释软滞后趋势,我们考虑了散射时间延迟的限制案例,我们将热力化时间延迟配音为$ t _ {\ rm th} $;这是辐射散布到有效的光球,然后将其散落到热量的时候,然后散布回去的时间。我们证明,$ t _ {\ rm th} $从低质量积聚率无关紧要的是$ \ dot {m} $硬状态的特征,以竞争或超过$ \ dot {m} $ dot {m} $特征的光线延迟。但是,我们的原油模型将$ t _ {\ rm th} $限制在峰值积聚功率耗散附近的狭窄环上,因此无法详细解释与较大的磁盘半径相关的异常长期软滞后。我们呼吁使用具有准确的不透明性的时间相关模型来评估散射延迟的潜在相关性。
Universal to black hole X-ray binaries, the high-frequency soft lag gets longer during the hard-to-intermediate state transition, evolving from ${\lesssim}1~{\rm ms}$ to ${\sim}10~{\rm ms}$. The soft lag production mechanism is thermal disk reprocessing of non-thermal coronal irradiation. X-ray reverberation models account for the light-travel time delay external to the disk, but assume instantaneous reprocessing of the irradiation inside the electron scattering-dominated disk atmosphere. We model this neglected scattering time delay as a random walk within an $α$-disk atmosphere, with approximate opacities. To explain soft lag trends, we consider a limiting case of the scattering time delay that we dub the thermalization time delay, $t_{\rm th}$; this is the time for irradiation to scatter its way down to the effective photosphere, where it gets thermalized, and then scatter its way back out. We demonstrate that $t_{\rm th}$ plausibly evolves from being inconsequential for low mass accretion rates $\dot{m}$ characteristic of the hard state, to rivaling or exceeding the light-travel time delay for $\dot{m}$ characteristic of the intermediate state. However, our crude model confines $t_{\rm th}$ to a narrow annulus near peak accretion power dissipation, so cannot yet explain in detail the anomalously long-duration soft lags associated with larger disk radii. We call for time-dependent models with accurate opacities to assess the potential relevance of a scattering delay.