论文标题

评估底面图像中的光盘和杯子分割的粗到精细的深度学习模型

Assessing Coarse-to-Fine Deep Learning Models for Optic Disc and Cup Segmentation in Fundus Images

论文作者

Moris, Eugenia, Dazeo, Nicolás, de Rueda, Maria Paula Albina, Filizzola, Francisco, Iannuzzo, Nicolás, Nejamkin, Danila, Wignall, Kevin, Leguía, Mercedes, Larrabide, Ignacio, Orlando, José Ignacio

论文摘要

底面图像中的自动化视盘(OD)和视杯(OC)分割与有效测量垂直杯盘比率(VCDR)是一种在眼科中常用的生物标志物,以确定胶状神经神经病的程度。通常,这是使用粗到1的深度学习算法来解决的,其中第一阶段近似于OD,第二阶段使用该区域的作物来预测OD/OC掩码。尽管这种方法广泛应用于文献中,但尚无研究来分析其对结果的实际贡献。在本文中,我们介绍了使用5个公共数据库的不同粗到精细设计的全面分析,无论是从标准分割的角度来看,以及用于估算青光眼评估的VCDR。我们的分析表明,这些算法不一定超过标准的多级单阶段模型,尤其是当这些算法是从足够大而多样化的训练集中学习的。此外,我们注意到粗阶段比罚款阶段获得更好的OD分割结果,并且在第二阶段提供OD监督对于确保准确的OC掩码至关重要。此外,在多数据集设置上训练的单阶段和两阶段模型都表现出比其他最先进的替代方案的结果,甚至比其他最先进的替代方案更好,同时在避难所中排名第一。最后,我们与Airogs图像子集上的六个眼科医生相比,评估了VCDR预测的模型,以在观察者间可变性的背景下理解它们。我们注意到,即使从单阶段和粗到1的模型中恢复的VCDR估计值也可以获得良好的青光眼检测结果,即使它们与专家的手动测量不高度相关。

Automated optic disc (OD) and optic cup (OC) segmentation in fundus images is relevant to efficiently measure the vertical cup-to-disc ratio (vCDR), a biomarker commonly used in ophthalmology to determine the degree of glaucomatous optic neuropathy. In general this is solved using coarse-to-fine deep learning algorithms in which a first stage approximates the OD and a second one uses a crop of this area to predict OD/OC masks. While this approach is widely applied in the literature, there are no studies analyzing its real contribution to the results. In this paper we present a comprehensive analysis of different coarse-to-fine designs for OD/OC segmentation using 5 public databases, both from a standard segmentation perspective and for estimating the vCDR for glaucoma assessment. Our analysis shows that these algorithms not necessarily outperfom standard multi-class single-stage models, especially when these are learned from sufficiently large and diverse training sets. Furthermore, we noticed that the coarse stage achieves better OD segmentation results than the fine one, and that providing OD supervision to the second stage is essential to ensure accurate OC masks. Moreover, both the single-stage and two-stage models trained on a multi-dataset setting showed results in pair or even better than other state-of-the-art alternatives, while ranking first in REFUGE for OD/OC segmentation. Finally, we evaluated the models for vCDR prediction in comparison with six ophthalmologists on a subset of AIROGS images, to understand them in the context of inter-observer variability. We noticed that vCDR estimates recovered both from single-stage and coarse-to-fine models can obtain good glaucoma detection results even when they are not highly correlated with manual measurements from experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源