论文标题
港口常数的变体
A Variant of Harborth Constant
论文作者
论文摘要
令$ g $为有限的添加剂Abelian集团。对于给定的$ k $一个正整数,$ k $ -harborth常数$ g^k(g)$被定义为最小的正整数$ t $,因此,鉴于$ g $的$ g $ a $ t $ t $ a $ t $的元件均存在零和尺寸$ k $的子集。对于某些组,我们找到$ g^k(g)$的确切值,或该常数的下限和上限。
Let $G$ be a finite additive abelian group. For given $k$ a positive integer, the $k$-Harborth constant $g^k(G)$ is defined to be the smallest positive integer $t$ such that given a set $S$ of elements of $G$ with size $t$ there exists a zero-sum subset of size $k$. We find either the exact value of $g^k(G)$, or lower and upper bounds for this constant for some groups.