论文标题
$ t \ bar {t} $变形SYK模型中的量子混乱,争夺和操作员的增长
Quantum chaos, scrambling and operator growth in $T\bar{T}$ deformed SYK models
论文作者
论文摘要
在这项工作中,我们调查了各种$ t \ bar {t} $中的量子混乱 - 带有有限$ n $的变形SYK模型,包括Syk $ _4 $,SuperSymmetric Syk $ _4 $和SYK $ _2 $型号。我们从数值上研究光谱形式(SFF),超时有序相关器(OTOC)和Krylov复杂性的演变。我们发现SYK $ _4 $和SSYK $ _4 $型号的SFF,OTOC和K-COMPLEXITY的特征演变保持不变,这意味着保留了量子混乱的属性。我们还确定了变形的SYK $ _2 $模型中的多体定位行为。
In this work, we investigate the quantum chaos in various $T\bar{T}$-deformed SYK models with finite $N$, including the SYK$_4$, the supersymmetric SYK$_4$, and the SYK$_2$ models. We numerically study the evolution of the spectral form factor (SFF), the out-of-time ordered correlator (OTOC), and the Krylov complexity. We find that the characteristic evolution of the SFF, OTOC and K-complexity of both the SYK$_4$ and SSYK$_4$ models remains unchanged under the deformation, which implies that the properties of quantum chaos is preserved. We also identify a many-body localization behavior in the deformed SYK$_2$ model.