论文标题

对半导体行业要求的石墨烯的晶圆级转移技术的评估

Assessment of wafer-level transfer techniques of graphene with respect to semiconductor industry requirements

论文作者

Wittmann, Sebastian, Pindl, Stephan, Sawallich, Simon, Nagel, Michael, Michalski, Alexander, Pandey, Himadri, Esteki, Ardeshir, Kataria, Satender, Lemme, Max C.

论文摘要

石墨烯是未来电子应用的有前途的候选人。基于制造石墨烯的电子设备通常需要石墨烯从其生长基板转移到另一种所需的底物。该设备集成的关键步骤必须适用于晶圆级,并满足半导体制造线的严格要求。在这项工作中,评估了有关晶圆可伸缩性,处理能力,自动化潜力,产量,污染和电性能的湿和半传递(即晶圆键)。开发了一种晶圆刻度工具,将石墨烯从150毫米的铜箔转移到带有粘合剂中间聚合物的200毫米硅晶片中。转移的石墨烯覆盖范围从97.9%到99.2%的湿转移,半传输的17.2%至90.8%,平均COP-Per污染为4.7 x10 $^{13} $(湿)和8.2x10 $^{12} $^{12} $ atoms/cm $^2 $(Semidry)。从Terahertz时域光谱中提取的相应电板电阻从450到550 $ω/sq $不等,用于湿传递,从1000到1650 $ω/平方英尺的半循环。尽管湿转移在产量,碳污染水平和电质量方面较高,但晶圆粘结率较低的铜污染水平,并由于现有的工业工具和过程提供了可扩展性。我们的结论可以推广到所有二维(2D)材料。

Graphene is a promising candidate for future electronic applications. Manufacturing graphene-based electronic devices typically requires graphene transfer from its growth substrate to another desired substrate. This key step for device integration must be applicable at the wafer level and meet the stringent requirements of semiconductor fabrication lines. In this work, wet and semidry transfer (i.e. wafer bonding) are evaluated regarding wafer scalability, handling, potential for automation, yield, contamination and electrical performance. A wafer scale tool was developed to transfer graphene from 150 mm copper foils to 200 mm silicon wafers with-out adhesive intermediate polymers. The transferred graphene coverage ranged from 97.9% to 99.2% for wet transfer and from 17.2% to 90.8% for semidry transfer, with average cop-per contaminations of 4.7x10$^{13}$ (wet) and 8.2x10$^{12}$ atoms/cm$^2$ (semidry). The corresponding electrical sheet resistance extracted from terahertz time-domain spectroscopy varied from 450 to 550 $Ω/sq$ for wet transfer and from 1000 to 1650 $Ω/sq$ for semidry transfer. Although wet transfer is superior in terms of yield, carbon contamination level and electrical quality, wafer bonding yields lower copper contamination levels and provides scalability due to existing in-dustrial tools and processes. Our conclusions can be generalized to all two-dimensional (2D) materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源