论文标题
FusionReTro:分子表示融合通过延迟计划的封闭式学习融合
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning
论文作者
论文摘要
循环合成计划的目的是设计从起始材料到目标分子的完整多步合成途径。当前的策略使用单步反折返模型和搜索算法的解耦方法,仅将产品作为输入来预测每个计划步骤的反应物,并忽略沿合成路线的有价值的上下文信息。在这项工作中,我们提出了一个新颖的框架,该框架利用上下文信息来改进反转合计划。我们将合成路线视为反应图,并提议通过三个原则步骤合并上下文:将分子编码为嵌入,通过路线进行汇总信息以及读数以预测反应物。我们的方法是首次尝试利用文化学习进行回合合成计划中的逆合合成预测。可以以端到端的方式有效地优化整个框架,并产生更实用和准确的预测。全面的实验表明,通过在途径上的上下文信息中融合,我们的模型可显着提高反复感知的基线的循环合成计划的性能,尤其是对于长综合路线而言。代码可从https://github.com/songtaoliu0823/fusionretro获得。
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule. Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms, taking only the product as the input to predict the reactants for each planning step and ignoring valuable context information along the synthetic route. In this work, we propose a novel framework that utilizes context information for improved retrosynthetic planning. We view synthetic routes as reaction graphs and propose to incorporate context through three principled steps: encode molecules into embeddings, aggregate information over routes, and readout to predict reactants. Our approach is the first attempt to utilize in-context learning for retrosynthesis prediction in retrosynthetic planning. The entire framework can be efficiently optimized in an end-to-end fashion and produce more practical and accurate predictions. Comprehensive experiments demonstrate that by fusing in the context information over routes, our model significantly improves the performance of retrosynthetic planning over baselines that are not context-aware, especially for long synthetic routes. Code is available at https://github.com/SongtaoLiu0823/FusionRetro.